- CPU性能调优
- Python代码的性能分析
- 生成性能分析文件
- 查看性能分析文件
- 寻找性能瓶颈
- Python与C++混合代码的性能分析
- 生成性能分析文件
- 查看性能分析文件
- 寻找性能瓶颈
- Python代码的性能分析
CPU性能调优
此教程会介绍如何使用Python的cProfile包、Python库yep、Google perftools来进行性能分析 (profiling) 与调优(performance tuning)。
Profling 指发现性能瓶颈。系统中的瓶颈可能和程序员开发过程中想象的瓶颈相去甚远。Tuning 指消除瓶颈。性能优化的过程通常是不断重复地 profiling 和 tuning。
PaddlePaddle 用户一般通过调用 Python API 编写深度学习程序。大部分 Python API 调用用 C++ 写的 libpaddle.so。所以 PaddlePaddle 的性能分析与调优分为两个部分:
- Python 代码的性能分析
- Python 与 C++ 混合代码的性能分析
Python代码的性能分析
生成性能分析文件
Python标准库中提供了性能分析的工具包,cProfile。生成Python性能分析的命令如下:
- python -m cProfile -o profile.out main.py
其中 main.py
是我们要分析的程序,-o
标识了一个输出的文件名,用来存储本次性能分析的结果。如果不指定这个文件,cProfile
会打印到标准输出。
查看性能分析文件
cProfile
在main.py 运行完毕后输出profile.out
。我们可以使用cprofilev
来查看性能分析结果。cprofilev
是一个Python的第三方库。使用它会开启一个HTTP服务,将性能分析结果以网页的形式展示出来:
- cprofilev -a 0.0.0.0 -p 3214 -f profile.out main.py
其中-a
标识HTTP服务绑定的IP。使用0.0.0.0
允许外网访问这个HTTP服务。-p
标识HTTP服务的端口。-f
标识性能分析的结果文件。main.py
标识被性能分析的源文件。
用Web浏览器访问对应网址,即可显示性能分析的结果:
- ncalls tottime percall cumtime percall filename:lineno(function)
- 1 0.284 0.284 29.514 29.514 main.py:1(<module>)
- 4696 0.128 0.000 15.748 0.003 /home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/fluid/executor.py:20(run)
- 4696 12.040 0.003 12.040 0.003 {built-in method run}
- 1 0.144 0.144 6.534 6.534 /home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/v2/__init__.py:14(<module>)
每一列的含义是:
列名 | 含义 |
---|---|
ncalls | 函数的调用次数 |
tottime | 函数实际使用的总时间。该时间去除掉本函数调用其他函数的时间 |
percall | tottime的每次调用平均时间 |
cumtime | 函数总时间。包含这个函数调用其他函数的时间 |
percall | cumtime的每次调用平均时间 |
filename:lineno(function) | 文件名, 行号,函数名 |
寻找性能瓶颈
通常tottime
和cumtime
是寻找瓶颈的关键指标。这两个指标代表了某一个函数真实的运行时间。
将性能分析结果按照tottime排序,效果如下:
- 4696 12.040 0.003 12.040 0.003 {built-in method run}
- 300005 0.874 0.000 1.681 0.000 /home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/v2/dataset/mnist.py:38(reader)
- 107991 0.676 0.000 1.519 0.000 /home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/fluid/framework.py:219(__init__)
- 4697 0.626 0.000 2.291 0.000 /home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/fluid/framework.py:428(sync_with_cpp)
- 1 0.618 0.618 0.618 0.618 /home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/fluid/__init__.py:1(<module>)
可以看到最耗时的函数是C++端的run
函数。这需要联合我们第二节Python
与C++
混合代码的性能分析来进行调优。而sync_with_cpp
函数的总共耗时很长,每次调用的耗时也很长。于是我们可以点击sync_with_cpp
的详细信息,了解其调用关系。
- Called By:
- Ordered by: internal time
- List reduced from 4497 to 2 due to restriction <'sync_with_cpp'>
- Function was called by...
- ncalls tottime cumtime
- /home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/fluid/framework.py:428(sync_with_cpp) <- 4697 0.626 2.291 /home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/fluid/framework.py:562(sync_with_cpp)
- /home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/fluid/framework.py:562(sync_with_cpp) <- 4696 0.019 2.316 /home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/fluid/framework.py:487(clone)
- 1 0.000 0.001 /home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/fluid/framework.py:534(append_backward)
- Called:
- Ordered by: internal time
- List reduced from 4497 to 2 due to restriction <'sync_with_cpp'>
通常观察热点函数间的调用关系,和对应行的代码,就可以了解到问题代码在哪里。当我们做出性能修正后,再次进行性能分析(profiling)即可检查我们调优后的修正是否能够改善程序的性能。
Python与C++混合代码的性能分析
生成性能分析文件
C++的性能分析工具非常多。常见的包括gprof
, valgrind
, google-perftools
。但是调试Python中使用的动态链接库与直接调试原始二进制相比增加了很多复杂度。幸而Python的一个第三方库yep
提供了方便的和google-perftools
交互的方法。于是这里使用yep
进行Python与C++混合代码的性能分析
使用yep
前需要安装google-perftools
与yep
包。ubuntu下安装命令为
- apt update
- apt install libgoogle-perftools-dev
- pip install yep
安装完毕后,我们可以通过
- python -m yep -v main.py
生成性能分析文件。生成的性能分析文件为main.py.prof
。
命令行中的-v
指定在生成性能分析文件之后,在命令行显示分析结果。我们可以在命令行中简单的看一下生成效果。因为C++与Python不同,编译时可能会去掉调试信息,运行时也可能因为多线程产生混乱不可读的性能分析结果。为了生成更可读的性能分析结果,可以采取下面几点措施:
- 编译时指定
-g
生成调试信息。使用cmake的话,可以将CMAKE_BUILD_TYPE指定为RelWithDebInfo
。 - 编译时一定要开启优化。单纯的
Debug
编译性能会和-O2
或者-O3
有非常大的差别。Debug
模式下的性能测试是没有意义的。 - 运行性能分析的时候,先从单线程开始,再开启多线程,进而多机。毕竟单线程调试更容易。可以设置
OMP_NUM_THREADS=1
这个环境变量关闭openmp优化。
查看性能分析文件
在运行完性能分析后,会生成性能分析结果文件。我们可以使用pprof
来显示性能分析结果。注意,这里使用了用Go
语言重构后的pprof
,因为这个工具具有web服务界面,且展示效果更好。
安装pprof
的命令和一般的Go
程序是一样的,其命令如下:
- go get github.com/google/pprof
进而我们可以使用如下命令开启一个HTTP服务:
- pprof -http=0.0.0.0:3213 `which python` ./main.py.prof
这行命令中,-http
指开启HTTP服务。which python
会产生当前Python二进制的完整路径,进而指定了Python可执行文件的路径。./main.py.prof
输入了性能分析结果。
访问对应的网址,我们可以查看性能分析的结果。结果如下图所示:
寻找性能瓶颈
与寻找Python代码的性能瓶颈类似,寻找Python与C++混合代码的性能瓶颈也是要看tottime
和cumtime
。而pprof
展示的调用图也可以帮助我们发现性能中的问题。
例如下图中,
在一次训练中,乘法和乘法梯度的计算占用2%-4%左右的计算时间。而MomentumOp
占用了17%左右的计算时间。显然,MomentumOp
的性能有问题。
在pprof
中,对于性能的关键路径都做出了红色标记。先检查关键路径的性能问题,再检查其他部分的性能问题,可以更有次序的完成性能的优化。