• 传递函数到 Spark

    传递函数到 Spark

    Spark 的 API 很大程度上依靠在驱动程序里传递函数到集群上运行。这里有两种推荐的方式:

    • 匿名函数 (Anonymous function syntax),可以在比较短的代码中使用。
    • 全局单例对象里的静态方法。例如,你可以定义 object MyFunctions 然后传递 MyFounctions.func1,像下面这样:
    1. object MyFunctions {
    2. def func1(s: String): String = { ... }
    3. }
    4. myRdd.map(MyFunctions.func1)

    注意,它可能传递的是一个类实例里的一个方法引用(而不是一个单例对象),这里必须传送包含方法的整个对象。例如:

    1. class MyClass {
    2. def func1(s: String): String = { ... }
    3. def doStuff(rdd: RDD[String]): RDD[String] = { rdd.map(func1) }
    4. }

    这里,如果我们创建了一个 new MyClass 对象,并且调用它的 doStuffmap 里面引用了这个 MyClass 实例中的 func1 方法,所以这个对象必须传送到集群上。类似写成 rdd.map(x => this.func1(x))

    以类似的方式,访问外部对象的字段将会引用整个对象:

    1. class MyClass {
    2. val field = "Hello"
    3. def doStuff(rdd: RDD[String]): RDD[String] = { rdd.map(x => field + x) }
    4. }

    相当于写成 rdd.map(x => this.field + x),引用了整个 this 对象。为了避免这个问题,最简单的方式是复制 field 到一个本地变量而不是从外部访问它:

    1. def doStuff(rdd: RDD[String]): RDD[String] = {
    2. val field_ = this.field
    3. rdd.map(x => field_ + x)
    4. }